EqualComAssRules: Answer test results
This page exposes the results of running answer tests on STACK test cases. This page is automatically generated from the STACK unit tests and is designed to show question authors what answer tests actually do. This includes cases where answer tests currentl fail, which gives a negative expected mark. Comments and further test cases are very welcome.
EqualComAssRules
Test | ? | Student response | Teacher answer | Opt | Mark | Answer note | |
---|---|---|---|---|---|---|---|
EqualComAssRules | 1/0 |
0 |
[] |
-1 | ATEqualComAssRules_STACKERROR_SAns. | ||
EqualComAssRules | 0 |
1/0 |
[] |
-1 | ATEqualComAssRules_STACKERROR_TAns. | ||
EqualComAssRules | 0+a |
a |
-1 | STACKERROR_OPTION. | |||
TEST_FAILED | |||||||
The answer test failed to execute correctly: please alert your teacher. Missing option when executing the test. | |||||||
EqualComAssRules | 0+a |
a |
x |
-1 | ATEqualComAssRules_Opt_List. | ||
The option to this answer test must be a non-empty list of supported rules. This is an error. Please contact your teacher. | |||||||
EqualComAssRules | 0+a |
a |
[x] |
-1 | ATEqualComAssRules_Opt_Wrong. | ||
The option to this answer test must be a non-empty list of supported rules. This is an error. Please contact your teacher. | |||||||
EqualComAssRules | 0+a |
a |
[intMul,intFac] |
-1 | ATEqualComAssRules_Opt_Incompatible. | ||
The option to this answer test contains incompatible rules. This is an error. Please contact your teacher. | |||||||
Basic cases | |||||||
EqualComAssRules | 1+1 |
3 |
[zeroAdd] |
0 | ATEqualComAssRules (AlgEquiv-false). | ||
EqualComAssRules | 1+1 |
2 |
[zeroAdd] |
0 | |||
EqualComAssRules | 1+1 |
2 |
[testdebug,zero Add] |
0 | ATEqualComAssRules: [1 nounadd 1,2]. | ||
EqualComAssRules | 0+a |
a |
[zeroAdd] |
1 | |||
EqualComAssRules | a+0 |
a |
[zeroAdd] |
1 | |||
EqualComAssRules | 1*a |
a |
[testdebug,zero Add] |
0 | ATEqualComAssRules: [1 nounmul a,a]. | ||
EqualComAssRules | 1*a |
a |
[oneMul] |
1 | |||
EqualComAssRules | 1*a |
a |
ID_TRANS |
1 | |||
EqualComAssRules | a/1 |
a |
ID_TRANS |
1 | |||
EqualComAssRules | 0*a |
0 |
ID_TRANS |
1 | |||
EqualComAssRules | 0-1*i |
-i |
ID_TRANS |
1 | |||
EqualComAssRules | 0-i |
-i |
ID_TRANS |
1 | |||
EqualComAssRules | 2+1*i |
2+i |
ID_TRANS |
1 | |||
EqualComAssRules | x^0+x^1/1+x^2/2+x^3/3!+x^4/4! |
1+x+x^2/2+x^3/3!+x^4/4! |
ID_TRANS |
1 | |||
EqualComAssRules | %e^x |
exp(x) |
[testdebug,ID_T RANS] |
1 | ATEqualComAssRules: [%e nounpow x,%e nounpow x]. | ||
EqualComAssRules | 12*%e^((2*(%pi/2)*%i)/2) |
12*exp(%i*(%pi/2)) |
ID_TRANS |
0 | |||
EqualComAssRules | 12*%e^((2*(%pi/2)*%i)/2) |
12*exp(%i*(%pi/2)) |
[ID_TRANS,[negN eg,negDiv,negOr d],[recipMul,di vDiv,divCancel] ,[intAdd,intMul ,intPow]] |
1 | |||
EqualComAssRules | 0^(1-1) |
0 |
ID_TRANS |
0 | ATEqualComAssRules_STACKERROR_SAns. | ||
EqualComAssRules | 0*a |
0 |
delete(zeroMul, ID_TRANS) |
0 | |||
EqualComAssRules | -(-a) |
a |
[negNeg] |
1 | |||
EqualComAssRules | -(-(-a)) |
-a |
[negNeg] |
1 | |||
EqualComAssRules | -(-(-a)) |
a |
[testdebug,negN eg] |
0 | ATEqualComAssRules (AlgEquiv-false). | ||
EqualComAssRules | 3/(-x) |
-3/x |
ID_TRANS |
0 | |||
EqualComAssRules | 3/(-x) |
-3/x |
[testdebug,ID_T RANS] |
0 | ATEqualComAssRules: [3 nounmul UNARY_RECIP UNARY_MINUS nounmul x,UNARY_MINUS nounmul 3 nounmul UNARY_RECIP x]. | ||
EqualComAssRules | -x*(x+1) |
x*(-x-1) |
[negDist] |
1 | |||
EqualComAssRules | -x*(x-1) |
x*(1-x) |
NEG_TRANS |
1 | |||
EqualComAssRules | -x*(x-1) |
x*(1-x) |
NEG_TRANS |
1 | |||
EqualComAssRules | -5*x*(3-x) |
5*x*(x-3) |
NEG_TRANS |
1 | |||
EqualComAssRules | -x*(x-1)*(x+1) |
x*(x-1)*(-x-1) |
NEG_TRANS |
1 | |||
EqualComAssRules | -x*(x-1)*(x+1) |
x*(1-x)*(x+1) |
NEG_TRANS |
1 | |||
EqualComAssRules | -x*(y-1)*(x-1) |
x*(1-x)*(y-1) |
NEG_TRANS |
1 | |||
EqualComAssRules | -x*(y-1)*(x-1) |
x*(x-1)*(1-y) |
NEG_TRANS |
1 | |||
EqualComAssRules | (x-y)*(y-x) |
-(x-y)*(x-y) |
NEG_TRANS |
1 | |||
EqualComAssRules | (x-y)*(y-x) |
-(x-y)^2 |
[testdebug,NEG_ TRANS] |
0 | ATEqualComAssRules: [UNARY_MINUS nounmul (x nounadd UNARY_MINUS nounmul y) nounmul (x nounadd UNARY_MINUS nounmul y),UNARY_MINUS nounmul (x nounadd UNARY_MINUS nounmul y) nounpow 2]. | ||
EqualComAssRules | -x*(x-1)*(x+1) |
x*(1-x)*(x+1) |
[testdebug,negD ist,negNeg] |
0 | ATEqualComAssRules: [x nounmul (UNARY_MINUS nounmul 1 nounadd UNARY_MINUS nounmul x) nounmul (x nounadd UNARY_MINUS nounmul 1),x nounmul (1 nounadd UNARY_MINUS nounmul x) nounmul (1 nounadd x)]. | ||
EqualComAssRules | -x*(y-1)*(x-1) |
x*(x-1)*(1-y) |
[testdebug,negD ist,negNeg] |
0 | ATEqualComAssRules: [x nounmul (1 nounadd UNARY_MINUS nounmul x) nounmul (y nounadd UNARY_MINUS nounmul 1),x nounmul (1 nounadd UNARY_MINUS nounmul y) nounmul (x nounadd UNARY_MINUS nounmul 1)]. | ||
EqualComAssRules | 3/(-x) |
-3/x |
[negDiv] |
1 | |||
EqualComAssRules | 3/(-x) |
ev(-3,simp)/x |
[negDiv] |
1 | |||
EqualComAssRules | (-a)/(-x) |
-(-a/x) |
[testdebug,ID_T RANS] |
0 | ATEqualComAssRules: [UNARY_MINUS nounmul a nounmul UNARY_RECIP UNARY_MINUS nounmul x,UNARY_MINUS nounmul UNARY_MINUS nounmul a nounmul UNARY_RECIP x]. | ||
EqualComAssRules | (-a)/(-x) |
-(-a/x) |
[negDiv] |
1 | |||
EqualComAssRules | (-a)/(-x) |
a/x |
[testdebug,negD iv] |
0 | ATEqualComAssRules: [UNARY_MINUS nounmul UNARY_MINUS nounmul a nounmul UNARY_RECIP x,a nounmul UNARY_RECIP x]. | ||
EqualComAssRules | (-a)/(-x) |
a/x |
[negDiv,negNeg] |
1 | |||
EqualComAssRules | 1/(-x) |
(-1)/x |
[negDiv] |
1 | |||
EqualComAssRules | 1/(-x) |
ev(-1,simp)/x |
[negDiv] |
1 | |||
EqualComAssRules | (2/-3)*(x-y) |
-(2/3)*(x-y) |
[negDiv] |
1 | |||
EqualComAssRules | (2/-3)*(x-y) |
(2/3)*(y-x) |
[negDiv] |
0 | |||
EqualComAssRules | (2/-3)*(x-y) |
(2/3)*(y-x) |
[negDiv,negOrd] |
1 | |||
EqualComAssRules | -2/(1-x) |
2/(x-1) |
[testdebug,negD iv] |
0 | ATEqualComAssRules: [UNARY_MINUS nounmul 2 nounmul UNARY_RECIP (1 nounadd UNARY_MINUS nounmul x),2 nounmul UNARY_RECIP (x nounadd UNARY_MINUS nounmul 1)]. | ||
EqualComAssRules | 1/2*3/x |
3/(2*x) |
[testdebug,ID_T RANS] |
0 | ATEqualComAssRules: [3 nounmul (UNARY_RECIP 2) nounmul UNARY_RECIP x,3 nounmul UNARY_RECIP 2 nounmul x]. | ||
EqualComAssRules | 1/2*3/x |
3/(2*x) |
[ID_TRANS,recip Mul] |
1 | |||
EqualComAssRules | 5/2*3/x |
15/(2*x) |
[testdebug,ID_T RANS,recipMul] |
0 | ATEqualComAssRules: [3 nounmul 5 nounmul UNARY_RECIP 2 nounmul x,15 nounmul UNARY_RECIP 2 nounmul x]. | ||
EqualComAssRules | -(x-y) |
y-x |
[negOrd] |
1 | |||
EqualComAssRules | 5/2*3/x |
15/(2*x) |
[ID_TRANS,recip Mul,intMul] |
1 | |||
EqualComAssRules | (3+2)*x+x |
5*x+x |
[ID_TRANS,intAd d] |
1 | |||
EqualComAssRules | (3-5)*x+x |
-2*x+x |
[ID_TRANS,intAd d] |
1 | |||
EqualComAssRules | 7*x*(-3*x) |
-21*x*x |
[ID_TRANS,intMu l] |
1 | |||
EqualComAssRules | (-7*x)*(-3*x) |
21*x*x |
[testdebug,ID_T RANS,intMul] |
0 | ATEqualComAssRules: [UNARY_MINUS nounmul UNARY_MINUS nounmul 21 nounmul x nounmul x,21 nounmul x nounmul x]. | ||
EqualComAssRules | (-7*x)*(-3*x) |
21*x*x |
[ID_TRANS,intMu l,negNeg] |
1 | |||
ev(a/b/c, simp)=a/(b*c) | |||||||
EqualComAssRules | a/b/c |
a/(b*c) |
[testdebug,ID_T RANS] |
0 | ATEqualComAssRules: [a nounmul (UNARY_RECIP b) nounmul UNARY_RECIP c,a nounmul UNARY_RECIP b nounmul c]. | ||
EqualComAssRules | a/b/c |
a/(b*c) |
[ID_TRANS,recip Mul] |
1 | |||
EqualComAssRules | (a/b)/c |
a/(b*c) |
[ID_TRANS,recip Mul] |
1 | |||
ev(a/(b/c), simp)=(a*c)/b | |||||||
EqualComAssRules | a/(b/c) |
(a*c)/b |
[testdebug,ID_T RANS] |
0 | ATEqualComAssRules: [a nounmul UNARY_RECIP b nounmul UNARY_RECIP c,a nounmul c nounmul UNARY_RECIP b]. | ||
EqualComAssRules | a/(b/c) |
(a*c)/b |
[testdebug,ID_T RANS,recipMul] |
0 | ATEqualComAssRules: [a nounmul UNARY_RECIP b nounmul UNARY_RECIP c,a nounmul c nounmul UNARY_RECIP b]. | ||
EqualComAssRules | a/(b/c) |
(a*c)/b |
[ID_TRANS,divDi v] |
1 | |||
EqualComAssRules | A*a/(B*b/c) |
A*(a*c)/(B*b) |
[ID_TRANS,divDi v] |
1 | |||
EqualComAssRules | A*a/(B*b/c)*1/d |
A*(a*c)/(B*b)*1/d |
[ID_TRANS,divDi v] |
1 | |||
EqualComAssRules | D*A*a/(B*b/c)*1/d |
A*(a*c)/(B*b)*D/d |
[ID_TRANS,divDi v] |
1 | |||
EqualComAssRules | A*a/(B*b/c)*1/d |
A*(a*c)/(B*b*d) |
[testdebug,ID_T RANS,divDiv] |
0 | ATEqualComAssRules: [A nounmul a nounmul c nounmul (UNARY_RECIP B nounmul b) nounmul UNARY_RECIP d,A nounmul a nounmul c nounmul UNARY_RECIP B nounmul b nounmul d]. | ||
EqualComAssRules | A*a/(B*b/c)*1/d |
A*(a*c)/(B*b*d) |
[ID_TRANS,divDi v,recipMul] |
1 | |||
EqualComAssRules | A/(B/(C/D)) |
A*C/(B*D) |
[testdebug,ID_T RANS,divDiv] |
0 | ATEqualComAssRules: [A nounmul C nounmul (UNARY_RECIP B) nounmul UNARY_RECIP D,A nounmul C nounmul UNARY_RECIP B nounmul D]. | ||
EqualComAssRules | A/(B/(C/D)) |
A*C/(B*D) |
[ID_TRANS,divDi v,recipMul] |
1 | |||
EqualComAssRules | 18 |
2*3^2 |
[intFac] |
1 | |||
EqualComAssRules | 0+%i*(-(1/27)) |
-(%i/27) |
[[zeroAdd,zeroM ul,oneMul,onePo w,idPow,zeroPow ,zPow,oneDiv],[ negNeg,negDiv,n egOrd],[recipMu l,divDiv,divCan cel],[intAdd,in tMul,intPow]] |
1 | |||
EqualComAssRules | x=sqrt(3)+2 |
x=3^(1/2)+2 |
[ID_TRANS,sqrtR em] |
1 | |||
EqualComAssRules | x=sqrt(3)+2 nounor x=-sqrt(3)- 2 |
x=3^(1/2)+2 nounor x=-3^(1/2)- 2 |
ID_TRANS |
0 | |||
EqualComAssRules | x=sqrt(3)+2 nounor x=-sqrt(3)- 2 |
x=3^(1/2)+2 nounor x=-3^(1/2)- 2 |
[ID_TRANS,sqrtR em] |
1 | |||
EqualComAssRules | x=sqrt(3)+2 nounor x=-sqrt(3)+ 7 |
x=3^(1/2)+2 nounor x=-3^(1/2)- 2 |
[ID_TRANS,sqrtR em] |
0 | ATEqualComAssRules (AlgEquiv-false)ATEquation_default. | ||
EqualComAssRules | 1/sqrt(3) |
1/3^(1/2) |
[ID_TRANS,sqrtR em] |
1 | |||
EqualComAssRules | 1/sqrt(3) |
3^(-1/2) |
[ID_TRANS,sqrtR em] |
0 |