Skip to content

EqualComAssRules: Answer test results

This page exposes the results of running answer tests on STACK test cases. This page is automatically generated from the STACK unit tests and is designed to show question authors what answer tests actually do. This includes cases where answer tests currentl fail, which gives a negative expected mark. Comments and further test cases are very welcome.

EqualComAssRules

Test
?
Student response
Teacher answer
Opt
Mark
Answer note
EqualComAssRules
1/0
0
[]
-1 ATEqualComAssRules_STACKERROR_SAns.
EqualComAssRules
0
1/0
[]
-1 ATEqualComAssRules_STACKERROR_TAns.
EqualComAssRules
0+a
a
-1 STACKERROR_OPTION.
TEST_FAILED
The answer test failed to execute correctly: please alert your teacher. Missing option when executing the test.
EqualComAssRules
0+a
a
x
-1 ATEqualComAssRules_Opt_List.
The option to this answer test must be a non-empty list of supported rules. This is an error. Please contact your teacher.
EqualComAssRules
0+a
a
[x]
-1 ATEqualComAssRules_Opt_Wrong.
The option to this answer test must be a non-empty list of supported rules. This is an error. Please contact your teacher.
EqualComAssRules
0+a
a
[intMul,intFac]
-1 ATEqualComAssRules_Opt_Incompatible.
The option to this answer test contains incompatible rules. This is an error. Please contact your teacher.
Basic cases
EqualComAssRules
1+1
3
[zeroAdd]
0 ATEqualComAssRules (AlgEquiv-false).
EqualComAssRules
1+1
2
[zeroAdd]
0
EqualComAssRules
1+1
2
[testdebug,zero
Add]
0 ATEqualComAssRules: [1 nounadd 1,2].
EqualComAssRules
0+a
a
[zeroAdd]
1
EqualComAssRules
a+0
a
[zeroAdd]
1
EqualComAssRules
1*a
a
[testdebug,zero
Add]
0 ATEqualComAssRules: [1 nounmul a,a].
EqualComAssRules
1*a
a
[oneMul]
1
EqualComAssRules
1*a
a
ID_TRANS
1
EqualComAssRules
a/1
a
ID_TRANS
1
EqualComAssRules
0*a
0
ID_TRANS
1
EqualComAssRules
0-1*i
-i
ID_TRANS
1
EqualComAssRules
0-i
-i
ID_TRANS
1
EqualComAssRules
2+1*i
2+i
ID_TRANS
1
EqualComAssRules
x^0+x^1/1+x^2/2+x^3/3!+x^4/4!
1+x+x^2/2+x^3/3!+x^4/4!
ID_TRANS
1
EqualComAssRules
%e^x
exp(x)
[testdebug,ID_T
RANS]
1 ATEqualComAssRules: [%e nounpow x,%e nounpow x].
EqualComAssRules
12*%e^((2*(%pi/2)*%i)/2)
12*exp(%i*(%pi/2))
ID_TRANS
0
EqualComAssRules
12*%e^((2*(%pi/2)*%i)/2)
12*exp(%i*(%pi/2))
[ID_TRANS,[negN
eg,negDiv,negOr
d],[recipMul,di
vDiv,divCancel]
,[intAdd,intMul
,intPow]]
1
EqualComAssRules
0^(1-1)
0
ID_TRANS
0 ATEqualComAssRules_STACKERROR_SAns.
EqualComAssRules
0*a
0
delete(zeroMul,
 ID_TRANS)
0
EqualComAssRules
-(-a)
a
[negNeg]
1
EqualComAssRules
-(-(-a))
-a
[negNeg]
1
EqualComAssRules
-(-(-a))
a
[testdebug,negN
eg]
0 ATEqualComAssRules (AlgEquiv-false).
EqualComAssRules
3/(-x)
-3/x
ID_TRANS
0
EqualComAssRules
3/(-x)
-3/x
[testdebug,ID_T
RANS]
0 ATEqualComAssRules: [3 nounmul UNARY_RECIP UNARY_MINUS nounmul x,UNARY_MINUS nounmul 3 nounmul UNARY_RECIP x].
EqualComAssRules
-x*(x+1)
x*(-x-1)
[negDist]
1
EqualComAssRules
-x*(x-1)
x*(1-x)
NEG_TRANS
1
EqualComAssRules
-x*(x-1)
x*(1-x)
NEG_TRANS
1
EqualComAssRules
-5*x*(3-x)
5*x*(x-3)
NEG_TRANS
1
EqualComAssRules
-x*(x-1)*(x+1)
x*(x-1)*(-x-1)
NEG_TRANS
1
EqualComAssRules
-x*(x-1)*(x+1)
x*(1-x)*(x+1)
NEG_TRANS
1
EqualComAssRules
-x*(y-1)*(x-1)
x*(1-x)*(y-1)
NEG_TRANS
1
EqualComAssRules
-x*(y-1)*(x-1)
x*(x-1)*(1-y)
NEG_TRANS
1
EqualComAssRules
(x-y)*(y-x)
-(x-y)*(x-y)
NEG_TRANS
1
EqualComAssRules
(x-y)*(y-x)
-(x-y)^2
[testdebug,NEG_
TRANS]
0 ATEqualComAssRules: [UNARY_MINUS nounmul (x nounadd UNARY_MINUS nounmul y) nounmul (x nounadd UNARY_MINUS nounmul y),UNARY_MINUS nounmul (x nounadd UNARY_MINUS nounmul y) nounpow 2].
EqualComAssRules
-x*(x-1)*(x+1)
x*(1-x)*(x+1)
[testdebug,negD
ist,negNeg]
0 ATEqualComAssRules: [x nounmul (UNARY_MINUS nounmul 1 nounadd UNARY_MINUS nounmul x) nounmul (x nounadd UNARY_MINUS nounmul 1),x nounmul (1 nounadd UNARY_MINUS nounmul x) nounmul (1 nounadd x)].
EqualComAssRules
-x*(y-1)*(x-1)
x*(x-1)*(1-y)
[testdebug,negD
ist,negNeg]
0 ATEqualComAssRules: [x nounmul (1 nounadd UNARY_MINUS nounmul x) nounmul (y nounadd UNARY_MINUS nounmul 1),x nounmul (1 nounadd UNARY_MINUS nounmul y) nounmul (x nounadd UNARY_MINUS nounmul 1)].
EqualComAssRules
3/(-x)
-3/x
[negDiv]
1
EqualComAssRules
3/(-x)
ev(-3,simp)/x
[negDiv]
1
EqualComAssRules
(-a)/(-x)
-(-a/x)
[testdebug,ID_T
RANS]
0 ATEqualComAssRules: [UNARY_MINUS nounmul a nounmul UNARY_RECIP UNARY_MINUS nounmul x,UNARY_MINUS nounmul UNARY_MINUS nounmul a nounmul UNARY_RECIP x].
EqualComAssRules
(-a)/(-x)
-(-a/x)
[negDiv]
1
EqualComAssRules
(-a)/(-x)
a/x
[testdebug,negD
iv]
0 ATEqualComAssRules: [UNARY_MINUS nounmul UNARY_MINUS nounmul a nounmul UNARY_RECIP x,a nounmul UNARY_RECIP x].
EqualComAssRules
(-a)/(-x)
a/x
[negDiv,negNeg]
1
EqualComAssRules
1/(-x)
(-1)/x
[negDiv]
1
EqualComAssRules
1/(-x)
ev(-1,simp)/x
[negDiv]
1
EqualComAssRules
(2/-3)*(x-y)
-(2/3)*(x-y)
[negDiv]
1
EqualComAssRules
(2/-3)*(x-y)
(2/3)*(y-x)
[negDiv]
0
EqualComAssRules
(2/-3)*(x-y)
(2/3)*(y-x)
[negDiv,negOrd]
1
EqualComAssRules
-2/(1-x)
2/(x-1)
[testdebug,negD
iv]
0 ATEqualComAssRules: [UNARY_MINUS nounmul 2 nounmul UNARY_RECIP (1 nounadd UNARY_MINUS nounmul x),2 nounmul UNARY_RECIP (x nounadd UNARY_MINUS nounmul 1)].
EqualComAssRules
1/2*3/x
3/(2*x)
[testdebug,ID_T
RANS]
0 ATEqualComAssRules: [3 nounmul (UNARY_RECIP 2) nounmul UNARY_RECIP x,3 nounmul UNARY_RECIP 2 nounmul x].
EqualComAssRules
1/2*3/x
3/(2*x)
[ID_TRANS,recip
Mul]
1
EqualComAssRules
5/2*3/x
15/(2*x)
[testdebug,ID_T
RANS,recipMul]
0 ATEqualComAssRules: [3 nounmul 5 nounmul UNARY_RECIP 2 nounmul x,15 nounmul UNARY_RECIP 2 nounmul x].
EqualComAssRules
-(x-y)
y-x
[negOrd]
1
EqualComAssRules
5/2*3/x
15/(2*x)
[ID_TRANS,recip
Mul,intMul]
1
EqualComAssRules
(3+2)*x+x
5*x+x
[ID_TRANS,intAd
d]
1
EqualComAssRules
(3-5)*x+x
-2*x+x
[ID_TRANS,intAd
d]
1
EqualComAssRules
7*x*(-3*x)
-21*x*x
[ID_TRANS,intMu
l]
1
EqualComAssRules
(-7*x)*(-3*x)
21*x*x
[testdebug,ID_T
RANS,intMul]
0 ATEqualComAssRules: [UNARY_MINUS nounmul UNARY_MINUS nounmul 21 nounmul x nounmul x,21 nounmul x nounmul x].
EqualComAssRules
(-7*x)*(-3*x)
21*x*x
[ID_TRANS,intMu
l,negNeg]
1
ev(a/b/c, simp)=a/(b*c)
EqualComAssRules
a/b/c
a/(b*c)
[testdebug,ID_T
RANS]
0 ATEqualComAssRules: [a nounmul (UNARY_RECIP b) nounmul UNARY_RECIP c,a nounmul UNARY_RECIP b nounmul c].
EqualComAssRules
a/b/c
a/(b*c)
[ID_TRANS,recip
Mul]
1
EqualComAssRules
(a/b)/c
a/(b*c)
[ID_TRANS,recip
Mul]
1
ev(a/(b/c), simp)=(a*c)/b
EqualComAssRules
a/(b/c)
(a*c)/b
[testdebug,ID_T
RANS]
0 ATEqualComAssRules: [a nounmul UNARY_RECIP b nounmul UNARY_RECIP c,a nounmul c nounmul UNARY_RECIP b].
EqualComAssRules
a/(b/c)
(a*c)/b
[testdebug,ID_T
RANS,recipMul]
0 ATEqualComAssRules: [a nounmul UNARY_RECIP b nounmul UNARY_RECIP c,a nounmul c nounmul UNARY_RECIP b].
EqualComAssRules
a/(b/c)
(a*c)/b
[ID_TRANS,divDi
v]
1
EqualComAssRules
A*a/(B*b/c)
A*(a*c)/(B*b)
[ID_TRANS,divDi
v]
1
EqualComAssRules
A*a/(B*b/c)*1/d
A*(a*c)/(B*b)*1/d
[ID_TRANS,divDi
v]
1
EqualComAssRules
D*A*a/(B*b/c)*1/d
A*(a*c)/(B*b)*D/d
[ID_TRANS,divDi
v]
1
EqualComAssRules
A*a/(B*b/c)*1/d
A*(a*c)/(B*b*d)
[testdebug,ID_T
RANS,divDiv]
0 ATEqualComAssRules: [A nounmul a nounmul c nounmul (UNARY_RECIP B nounmul b) nounmul UNARY_RECIP d,A nounmul a nounmul c nounmul UNARY_RECIP B nounmul b nounmul d].
EqualComAssRules
A*a/(B*b/c)*1/d
A*(a*c)/(B*b*d)
[ID_TRANS,divDi
v,recipMul]
1
EqualComAssRules
A/(B/(C/D))
A*C/(B*D)
[testdebug,ID_T
RANS,divDiv]
0 ATEqualComAssRules: [A nounmul C nounmul (UNARY_RECIP B) nounmul UNARY_RECIP D,A nounmul C nounmul UNARY_RECIP B nounmul D].
EqualComAssRules
A/(B/(C/D))
A*C/(B*D)
[ID_TRANS,divDi
v,recipMul]
1
EqualComAssRules
18
2*3^2
[intFac]
1
EqualComAssRules
0+%i*(-(1/27))
-(%i/27)
[[zeroAdd,zeroM
ul,oneMul,onePo
w,idPow,zeroPow
,zPow,oneDiv],[
negNeg,negDiv,n
egOrd],[recipMu
l,divDiv,divCan
cel],[intAdd,in
tMul,intPow]]
1
EqualComAssRules
x=sqrt(3)+2
x=3^(1/2)+2
[ID_TRANS,sqrtR
em]
1
EqualComAssRules
x=sqrt(3)+2 nounor x=-sqrt(3)-
2
x=3^(1/2)+2 nounor x=-3^(1/2)-
2
ID_TRANS
0
EqualComAssRules
x=sqrt(3)+2 nounor x=-sqrt(3)-
2
x=3^(1/2)+2 nounor x=-3^(1/2)-
2
[ID_TRANS,sqrtR
em]
1
EqualComAssRules
x=sqrt(3)+2 nounor x=-sqrt(3)+
7
x=3^(1/2)+2 nounor x=-3^(1/2)-
2
[ID_TRANS,sqrtR
em]
0 ATEqualComAssRules (AlgEquiv-false)ATEquation_default.
EqualComAssRules
1/sqrt(3)
1/3^(1/2)
[ID_TRANS,sqrtR
em]
1
EqualComAssRules
1/sqrt(3)
3^(-1/2)
[ID_TRANS,sqrtR
em]
0