# CompSquare: Answer test results

This page exposes the results of running answer tests on STACK test cases. This page is automatically generated from the STACK unit tests and is designed to show question authors what answer tests actually do. This includes cases where answer tests currentl fail, which gives a negative expected mark. Comments and further test cases are very welcome.

## CompSquare

Test | ? | Student response | Teacher answer | Opt | Mark | Answer note | |
---|---|---|---|---|---|---|---|

CompSquare | 1/0 |
0 |
-1 | STACKERROR_OPTION. | |||

TEST_FAILED | |||||||

The answer test failed to execute correctly: please alert your teacher. Missing option when executing the test. | |||||||

CompSquare | 1/0 |
0 |
x |
-1 | ATCompSquare_STACKERROR_SAns. | ||

TEST_FAILED | |||||||

The answer test failed to execute correctly: please alert your teacher. Division by zero. | |||||||

CompSquare | 0 |
1/0 |
x |
-1 | ATCompSquare_STACKERROR_TAns. | ||

TEST_FAILED | |||||||

The answer test failed to execute correctly: please alert your teacher. Division by zero. | |||||||

CompSquare | 0 |
0 |
1/0 |
-1 | ATCompSquare_STACKERROR_Opt. | ||

TEST_FAILED | |||||||

The answer test failed to execute correctly: please alert your teacher. Division by zero. | |||||||

Category errors. | |||||||

CompSquare | 1 |
(x-1)^2+1 |
x |
0 | ATCompSquare_SA_not_depend_var. | ||

Your answer should depend on the variable \(x\) but it does not! | |||||||

CompSquare | (t-1)^2+1 |
(x-1)^2+1 |
x |
0 | ATCompSquare_SA_not_depend_var. | ||

Your answer should depend on the variable \(x\) but it does not! | |||||||

CompSquare | (x-1)^2+1=0 |
(x-1)^2+1 |
x |
0 | ATCompSquare_STACKERROR_LIST. | ||

Your answer should be an expression, not an equation, inequality, list, set or matrix. | |||||||

CompSquare | sin(x-1)+a-1 |
(x-1)^2+1 |
x |
0 | ATCompSquare_false_not_AlgEquiv. | ||

Trivial cases | |||||||

CompSquare | 1 |
1 |
x |
1 | ATCompSquare_true_trivial. | ||

CompSquare | x-a |
x-a |
x |
1 | ATCompSquare_true_trivial. | ||

CompSquare | x^2 |
x^2 |
x |
1 | ATCompSquare_true. | ||

CompSquare | x^2-1 |
(x-1)*(x+1) |
x |
1 | ATCompSquare_true. | ||

CompSquare | (x-1)^2*k |
(x-1)^2*k |
x |
1 | ATCompSquare_true. | ||

CompSquare | (x-1)^2/k |
(x-1)^2/k |
x |
1 | ATCompSquare_true. | ||

Normal cases | |||||||

CompSquare | (x-1)^2+1 |
(x-1)^2+1 |
x |
1 | ATCompSquare_true. | ||

CompSquare | (1-x)^2+1 |
(x-1)^2+1 |
x |
1 | ATCompSquare_true. | ||

CompSquare | (X-1)^2+1 |
(x-1)^2+1 |
x |
0 | ATCompSquare_SA_not_depend_var. | ||

Your answer should depend on the variable \(x\) but it does not! | |||||||

CompSquare | 9*(x-1)^2+1 |
(3*x-3)^2+1 |
x |
1 | ATCompSquare_true. | ||

CompSquare | -(x-1)^2 |
-(x-1)^2 |
x |
1 | ATCompSquare_true. | ||

CompSquare | -(1-x)^2 |
-(x-1)^2 |
x |
1 | ATCompSquare_true. | ||

CompSquare | -(x-1)^2+3 |
-(x-1)^2+3 |
x |
1 | ATCompSquare_true. | ||

CompSquare | -(1-x)^2+3 |
-(x-1)^2+3 |
x |
1 | ATCompSquare_true. | ||

CompSquare | -4*(x-1)^2+3 |
-4*(x-1)^2+3 |
x |
1 | ATCompSquare_true. | ||

CompSquare | -4*(x-1)^2+3 |
-(2*x-2)^2+3 |
x |
1 | ATCompSquare_true. | ||

CompSquare | 3-4*(x-1)^2 |
-(2*x-2)^2+3 |
x |
1 | ATCompSquare_true. | ||

CompSquare | (x-1)^2+1 |
(x+1)^2+1 |
x |
0 | ATCompSquare_true_not_AlgEquiv. | ||

Your answer appears to be in the correct form, but is not equivalent to the correct answer. | |||||||

CompSquare | (x-a^2)^2+1+b |
(x-a^2)^2+1+b |
x |
1 | ATCompSquare_true. | ||

CompSquare | x^2-2*x+2 |
(x-1)^2+1 |
x |
0 | ATCompSquare_false_no_summands. | ||

The completed square is of the form \( a(\cdots\cdots)^2 + b\) where \(a\) and \(b\) do not depend on your variable. More than one of your summands appears to depend on the variable in your answer. | |||||||

CompSquare | x+1 |
(x-1)^2+1 |
x |
0 | ATCompSquare_false_not_AlgEquiv. | ||

CompSquare | a*(x-1)^2+1 |
a*(x-1)^2+1 |
x |
1 | ATCompSquare_true. | ||

CompSquare | -a*(x-1)^2+1 |
1-a*(x-1)^2 |
x |
1 | ATCompSquare_true. | ||

Not simple variable | |||||||

CompSquare | (sin(x)-1)^2+1 |
(sin(x)-1)^2+1 |
sin(x) |
1 | ATCompSquare_true. | ||

CompSquare | (x^2-1)^2+1 |
(x^2-1)^2+1 |
x^2 |
1 | ATCompSquare_true. | ||

CompSquare | (y-1)^2+1 |
(y-1)^2+1 |
y |
1 | ATCompSquare_true. | ||

CompSquare | (y+1)^2+1 |
(y-1)^2+1 |
y |
0 | ATCompSquare_true_not_AlgEquiv. | ||

Your answer appears to be in the correct form, but is not equivalent to the correct answer. | |||||||

CompSquare | (x-1)^2+1 |
(sin(x)-1)^2+1 |
sin(x) |
0 | ATCompSquare_SA_not_depend_var. | ||

Your answer should depend on the variable \({\it facdum}\) but it does not! |