Skip to content

CasEqual: Answer test results

This page exposes the results of running answer tests on STACK test cases. This page is automatically generated from the STACK unit tests and is designed to show question authors what answer tests actually do. This includes cases where answer tests currentl fail, which gives a negative expected mark. Comments and further test cases are very welcome.

CasEqual

Test
?
Student response
Teacher answer
Opt
Mark
Answer note
CasEqual
1/0
x^2-2*x+1
-1 ATCASEqual_STACKERROR_SAns.
CasEqual
x
1/0
-1 ATCASEqual_STACKERROR_TAns.
CasEqual
0.5
1/2
x
0 ATCASEqual (AlgEquiv-true).
CasEqual
x=1
1
0 ATCASEqual ATAlgEquiv_TA_not_equation.
You have entered an equation, but an equation is not expected here. You may have typed something like "y=2*x+1" when you only needed to type "2*x+1".
Case sensitivity
CasEqual
a
A
0 ATCASEqual_false.
CasEqual
exdowncase(X^2-2*X+1)
x^2-2*x+1
1 ATCASEqual_true.
Numbers
CasEqual
4^(-1/2)
1/2
0 ATCASEqual (AlgEquiv-true).
CasEqual
ev(4^(-1/2),simp)
ev(1/2,simp)
1 ATCASEqual_true.
CasEqual
2^2
4
0 ATCASEqual (AlgEquiv-true).
Unary plus
CasEqual
+1-2
1-2
0 ATCASEqual (AlgEquiv-true).
Powers
CasEqual
a^2/b^3
a^2*b^(-3)
0 ATCASEqual (AlgEquiv-true).
Expressions with subscripts
CasEqual
rho*z*V/(4*pi*epsilon[0]*(R^2+
z^2)^(3/2))
rho*z*V/(4*pi*epsilon[0]*(R^2+
z^2)^(3/2))
1 ATCASEqual_true.
CasEqual
rho*z*V/(4*pi*epsilon[1]*(R^2+
z^2)^(3/2))
rho*z*V/(4*pi*epsilon[0]*(R^2+
z^2)^(3/2))
0 ATCASEqual_false.
Mix of floats and rational numbers
CasEqual
0.5
1/2
0 ATCASEqual (AlgEquiv-true).
CasEqual
x^(1/2)
sqrt(x)
0 ATCASEqual (AlgEquiv-true).
CasEqual
ev(x^(1/2),simp)
ev(sqrt(x),simp)
1 ATCASEqual_true.
CasEqual
abs(x)
sqrt(x^2)
0 ATCASEqual (AlgEquiv-true).
CasEqual
ev(abs(x),simp)
ev(sqrt(x^2),simp)
1 ATCASEqual_true.
CasEqual
x-1
(x^2-1)/(x+1)
0 ATCASEqual (AlgEquiv-true).
Polynomials and rational function
CasEqual
x+x
2*x
0 ATCASEqual (AlgEquiv-true).
CasEqual
ev(x+x,simp)
ev(2*x,simp)
1 ATCASEqual_true.
CasEqual
x+x^2
x^2+x
0 ATCASEqual (AlgEquiv-true).
CasEqual
ev(x+x^2,simp)
ev(x^2+x,simp)
1 ATCASEqual_true.
CasEqual
(x-1)^2
x^2-2*x+1
0 ATCASEqual (AlgEquiv-true).
CasEqual
(x-1)^(-2)
1/(x^2-2*x+1)
0 ATCASEqual (AlgEquiv-true).
CasEqual
1/n-1/(n+1)
1/(n*(n+1))
0 ATCASEqual (AlgEquiv-true).
Trig functions
CasEqual
cos(x)
cos(-x)
0 ATCASEqual (AlgEquiv-true).
CasEqual
ev(cos(x),simp)
ev(cos(-x),simp)
1 ATCASEqual_true.
CasEqual
cos(x)^2+sin(x)^2
1
0 ATCASEqual (AlgEquiv-true).
CasEqual
2*cos(x)^2-1
cos(2*x)
0 ATCASEqual (AlgEquiv-true).
Predicate function wrapper
CasEqual
imag_numberp(2*%i)
true
1 ATCASEqual_true.
CasEqual
imag_numberp(%e^(%i*%pi/2))
true
1 ATCASEqual_true.
CasEqual
imag_numberp(2)
false
1 ATCASEqual_true.
CasEqual
imag_numberp(%e^(%pi/2))
false
1 ATCASEqual_true.
CasEqual
complex_exponentialp(3*%e^(%i*
%pi/6))
true
1 ATCASEqual_true.
CasEqual
complex_exponentialp(3)
true
1 ATCASEqual_true.
CasEqual
complex_exponentialp(%e^(%i*%p
i/6))
true
1 ATCASEqual_true.
CasEqual
complex_exponentialp(%e^%i)
true
1 ATCASEqual_true.
CasEqual
complex_exponentialp(%e^(%pi/6
))
true
1 ATCASEqual_true.
CasEqual
complex_exponentialp(3+%i)
false
1 ATCASEqual_true.
CasEqual
complex_exponentialp(%e^(%i)/4
)
true
1 ATCASEqual_true.
CasEqual
complex_exponentialp(3*exp(%i*
%pi/6))
true
1 ATCASEqual_true.
CasEqual
complex_exponentialp(3*exp(-%i
*%pi/6))
true
1 ATCASEqual_true.
CasEqual
complex_exponentialp(-3*exp(%i
*%pi/6))
true
1 ATCASEqual_true.
CasEqual
complex_exponentialp(-(3*exp(%
i*%pi/6)))
true
1 ATCASEqual_true.
CasEqual
complex_exponentialp(-(r*exp(i
*atan(bb/aa))))
true
0 ATCASEqual_false.
CasEqual
integerp(-1)
true
0 ATCASEqual_false.
CasEqual
integerp(ev(-1,simp))
true
1 ATCASEqual_true.